
32 The Delphi Magazine Issue 45

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Cherchez La Femme
Continuing an investigation
into data compression

In last month’s article we looked
at Huffman encoding as a way to

compress data. Although I didn’t
really stress it at the time, Huffman
encoding is the best you can do if
you are trying to replace individual
bytes with bit string codes.
Huffman guarantees that the bit
strings it generates for the bytes
that appear in the original data
stream are the minimal ones
required for the job.

This month we’ll briefly look at
another byte encoding method,
even older than Huffman, before
moving onto an underlying algo-
rithm used in the Zip file format.

Shannon-Fano Encoding
Another byte encoding method
which had its heyday just before
Huffman wrote his seminal paper
was the Shannon-Fano encoding
method. Invented separately and
simultaneously by two research-
ers, Claude Shannon and RM Fano,
it attempts to build the minimal
encodings from the top down
(unlike the Huffman method,
which, if you think about it whilst
looking at last’s month’s Algo-
rithms Alfresco, is a bottom up
method).

Just as for last month, we will use
the song title La Habanera as an
example chunk of data to
compress. The words have the
following distribution of letters
(ignoring case sensitivity for now):

a 4
b 1
e 1
h 1
l 1
n 1
r 1
space 1

Draw a horizontal line to divide the
letters up so that (roughly) the
same distribution occurs above
the line as below it:

a 4
b 1
----------------1
e 1
h 1
l 1
n 1
r 1
space 1

There’s a distribution value of 5
characters above the line and 6
characters below it. For each of the
halves do the same, and repeat the
algorithm until each individual
letter is between two lines:

a 4
---------------2
b 1
----------------1
e 1
--------------3
h 1
-------------4
l 1
---------------2
n 1
--------------3
r 1
-------------4
space 1

I’ve tried to be clever in the exam-
ple above and not only identified
each line by a number denoting the
level it was added, but also I have
made the lines smaller each time.
The reason why? Turn the maga-
zine anti-clockwise by 90 degrees
and look at the lines again. If you
imagine links between the (level) 1
and the 2s, and also between the 2s
and the 3s, and again between the
3s and the 4s, and finally between
the lines and the actual characters,
hey presto, you’ve got yourself a
binary tree.

If we start at the root and take a
move left as meaning we add a zero
bit, and a move right as adding a
one bit, we get the following
encoding:

a 00
b 01
e 100
h 1010
l 1011
n 110
r 1110
space 1111

We can then encode La Habanera
as the following bit string,
comprising 32 bits in all:

10110011
11101000
01001101
00111000

Which is, if you recall from last
month’s article, pretty close to the
optimal Huffman encoding of 31
bits.

New Beginnings
Up until 1977, the main thrust of
compression research centered
on either the Shannon-Fano or the
Huffman algorithms, either in
making them dynamic (so that the
code table didn’t have to be part of
the compressed file), or in various
speed, space and efficiency
improvements.

Then, suddenly, two Israeli
researchers, Jacob Ziv and Abra-
ham Lempel, came up with a radi-
cally different way of compression
and opened up research into a
completely different direction.

Their main idea was not to try
and encode single characters, but
instead to encode strings of charac-
ters. Their idea was to use a dictio-
nary of previously seen phrases
from the file being compressed to
help encode later phrases.

34 The Delphi Magazine Issue 45

Suppose that you had a normal
English dictionary. Every word
you’d encounter in a given text file
would appear in the dictionary. If
the compressor and decom-
pressor programs had access to an
electronic version of this dictio-
nary, they could encode individual
words in the text file by finding
them in the dictionary and output-
ting the page number and the
number of the word on the page.

We could assume that a 2-byte
integer would be able to hold the
page number (there are not that
many dictionaries with more than
65,536 pages) and a byte should be
able to hold the word number on
the page (again there are never
usually more than 256 words
defined on a page in a dictionary),
hence each word in the text file, no
matter how long, would be
replaced by three bytes. Obviously
small words like a, in, up, and so on,
would grow in size instead of being
compressed, but the majority of
words are three or more letters
long and so the overall size of the
compressed file would tend to
decrease.

Ziv and Lempel’s idea followed
these lines. Instead of having a
static pre-built dictionary, though,
their new algorithm generated a
dictionary on the fly from the data
that the compressor had already
seen in the input file. And instead
of using page numbers and word
numbers on the page, they output
distance and length values.

It works a little like this: as you
read through the input file, you
attempt to match up the set of
characters at your current posi-
tion with something you’ve already
seen in the input file. If you do find a
match you calculate the distance
of the matching string from your
current position and the number of
bytes (the length) that match. If
you manage to find several
matches, you choose the longest
one.

Dictionary Encoding
A small example would serve us
here. Suppose we were compress-
ing the sentence:

a cat is a cat is a cat

The first character, a, doesn’t
match with anything yet seen
(well, duh, we haven’t seen
anything yet!), so we output it to
the compressed stream. Similarly
with the following space and c. The
next a matches a previous a but
that’s all, we can’t match anything
more. Let us impose the rule that
we only want to match three char-
acters or more before we get
excited. So, we output the a to the
output stream. Similarly for the t,
space, i, s, and space. We can visual-
ize the current state of play as the
following:

---------+
a cat is |a cat is a cat
---------+^

where the characters seen are in
the box and the current position is
marked with a caret.

Now it gets interesting. The set
of characters ‘a cat is ’ at the cur-
rent position matches something
we’ve already seen before. The
matching string occurs nine char-
acters before our current position
and we can match nine characters.
So we can output a distance/length
pair, represented by <9,9>, to the
output file and then advance nine
characters. The state of play is
then

------------------+
a cat is a cat is |a cat
------------------+^

But, hey, again we can match the
set of characters at the current
position with something that’s
gone before. We have a choice in
fact, we can either match five char-
acters nine characters before, or
five characters 18 characters
before. Let’s choose the first
option, <9,5>. Our compressed
stream looks like this

a cat is <9,9><9,5>

Decompressing this stream is
quite easy too. As we decompress,
we build up a buffer of decom-
pressed characters so that we can
decode the distance/length pairs
or codes. Literal characters in the
compressed stream are output to

the decompressed stream as they
are.

The first nine codes in the com-
pressed stream are literal charac-
ters so we output them to the
decompressed stream as is, and
also we create a buffer (called a
sliding window) at the same time.
The buffer looks like this at this
point:

---------+
a cat is |
---------+

The next code in the compressed
stream is a distance/length pair,
<9,9>. We decode this as, output
the nine characters found at a dis-
tance of nine bytes back in the
buffer. Those nine characters are
‘a cat is ’ and so we output those
to our uncompressed stream and
add them to our buffer, or sliding
window:

------------------+
a cat is a cat is |
------------------+

Again the next code in the com-
pressed stream is a distance/
length pair, <9,5>, and I’m sure you
can decode that using the buffer
we have.

With this small example we
haven’t needed a dictionary per se,
we just used brute force (or our
expert eye!) to find the longest
match in the set of previously seen
characters.

Sliding Windows
By the way, in case you were
wondering, defining the buffer of
previously seen characters as a
‘sliding window’ means that we
only consider the previous n bytes
in trying to find a possible match; n
is usually something like 4Kb or
8Kb (the Deflate algorithm in
PKZIP can use a sliding window of
up to 32Kb in size). As we advance
the current position, so we slide
the window forward on the data
we’ve already seen. Why do we do
this? Why not use the entirety of
the previously seen text? The
answer to this boils down to how
text is generally structured. In
general, text we read and write

obeys a rule called locality of
reference. What this term means is
that characters in a text file tend to
match other characters close by
rather than far away. In a novel, for
example, the protagonists and
locations the narrative is describ-
ing tend to be ‘clumped’ together
in sections of chapters or chapters.
The standard words and phrases
like and, the, and he said occur
throughout the novel.

Other text, like that in reference
books or my articles, also exhibits
locality of reference. Hence it
makes sense to limit the amount of
previously seen text we have to
search through for a matching
string: locality of reference tells us
that it makes sense. Another
strong reason is that the more text
we have to search through, the
slower the compression becomes.

Consider also how we are to
encode the distance/length pair. I
haven’t talked about this yet, but it
makes sense to pack them in as
small a space as possible. If we
have a sliding window over the last
4Kb of text, for example we can

encode a distance value in 12 bits
(212 is 4Kb). If we limit the maximum
length we try and match to 15
characters, we can encode that in 4
bits, and suddenly we see that we
can manage to encode a distance/
length pair in two bytes. We could
also use an 8Kb window and a max-
imum of 7 matched characters and
still fit into two bytes. Our com-
pressed stream can be written and
read in byte units, rather than
having to mess around with writing
and reading odd numbers of bits,
as in the Huffman case. Also, if we
limit the distance/length codes to
two bytes, it means that strings of
three characters or more which
match with something prior can
get compressed, whereas matches
of one or two characters can be
safely ignored since they won’t
compress.

Without being too rigorous, this
is the essence of Ziv and Lempel’s
algorithm, usually known these
days as LZ77 (ie, their initials and a
non-Y2K-compliant year).

The above discussion does leave
out a small implementation detail:

how do you tell the difference
between a literal character and a
distance/length code as you are
reading through the compressed
data? After all, there is nothing
intrinsically different between a
literal character and the first byte
of a distance/length pair. One
simple answer is to output a single
flag bit before the literal character
or distance/length code: if the flag
bit is on, the next code read will be
a literal character, if the flag bit is
off, the next code read will be a
distance/length pair. But, stop a
moment, this would mean that
we’ll be outputting odd bits again
and our previously acclaimed
advantage of reading/writing of
entire bytes is thrown out of the
window. What to do?

The general way around this dis-
advantage is to have a byte of eight
flag bits that tells you what the
next eight codes are going to be.
The first bit denotes what the first
code after the flag byte is going to
be, the second bit what the second
code is going to be, and so on for
eight bits and codes, after which

36 The Delphi Magazine Issue 45

there will be another flag byte.
Using this scheme we can write
(and read) the compressed stream
as bytes.

Trouble Ahead
A similar scheme is used, for
example, by the old Microsoft
EXPAND.EXE program you used to
get with MS-DOS or Windows 3.1
(nowadays, Microsoft products
use Cabinet files instead). I’m sure
the oldies amongst us would
remember them, the files on the
DOS diskettes used to have names
like FILENAME.EX_ and the
EXPAND.EXE program would
decompress them and fix the final
character of the extension in the
decompressed file into the bar-
gain. With Microsoft’s version, the
distance/length codes were always
2 bytes in size, 12 bits of which
being the ‘distance’ value (in fact,
the MS version used a circular
queue of bytes and the distance
value was an offset from the start of
the queue), with the other 4 bits
being the length value. Note that
when perusing my old diskettes I
noticed that the MS-DOS 6.22 dis-
kettes used a different compres-
sion scheme, but my old Windows
3.1 diskettes used this LZ77 com-
pression: the date when Microsoft
switched compression methods
seemed to have been in 1993. My
research for this article also
revealed that the old Windows 3.1
help files used this type of LZ77

compression for the text within
them.

This article won’t attempt to
emulate what Microsoft used to do,
though. The reason? Patents. I
don’t know how you feel, but in my
view patents are the bane of com-
puter algorithms. They simply
should not be allowed [Amen! Ed].
The compression field is riddled
with patented algorithms and
negotiating it is like walking
through a minefield. The original
LZ77 was not patented. Microsoft,
however, patented their LZ77 vari-
ant (the one used by EXPAND.EXE
and Windows 3.1 help files). Ziv
and Lempel went on to describe a
different dictionary compression
algorithm, known as LZ78:
unpatented. Terry Welch of Unisys
described a variant of this algo-
rithm (known as LZW, essentially it
preloaded the dictionary) which
was patented and which formed
the basis of the GIF file format. The
result? Unisys collect a royalty for
every GIF viewer sold. Whilst
researching this article, I came
across other patents for simple
variants of LZ77, each of which
sounded exactly like each other.
It’s a mess. US law states that ideas
are not patentable, and yet some-
one somewhere managed to patent
an algorithm and the gates from
then on were opened. Imagine the
mess we’d all be in if quicksort, the
fastest general sort, or red-black
binary trees, the basis for associa-
tive arrays in C++’s STL, were pat-
ented. Every time you used one in
your program you’d have to pay a
small sum to someone. Brrrr.

Our Own LZ77 Algorithm
Anyway, enough soapbox, what
we’ll do from now on is to describe
the Algorithms Alfresco LZ77 algo-
rithm. (Drum roll, fanfare.) As far
as I know, this particular variant is
not patented, mainly because it
employs ideas and algorithms
from other Algorithms Alfresco arti-
cles and borrows from the Deflate
algorithm in PKZIP, which itself is
not patented (Phil Katz, its inven-
tor, was far-sighted enough to put
it in the public domain). Of course,
its main basis is still the LZ77
algorithm.

Let’s define some variables.
We’ll employ the eight flag bits in a
byte trick. If a flag bit is zero, the
associated code will be a literal
character; if it is one, the associ-
ated code will be a distance/length
pair. This latter code will always be
two bytes in length, as discussed,
with 13 bits for the distance value
and 3 bits for the length value. In
fact, we shall use the upper 13 bits
of the two bytes for the distance
and the lower 3 bits for the length.

Because we have 13 bits for the
distance value, in theory we can
encode distances from 0 to 8,191
bytes, and so our sliding window
will be 8Kb in size. Note that we
can’t have a distance of 0 bytes
(we’d be matching with the cur-
rent position) and so instead we’ll
interpret these 13 bits as being
values from 1 to 8,192 by the
simple expedient of adding one.

Consider the length value. In
theory, using three bits, we can
only encode lengths from 0 to 7.
Remember, though, we only try

procedure TaaLZSlidingWindow.swAdvanceAfterAdd(
aCount : integer);

begin
{advance the start of the sliding window, if required}
if ((swCurrent-swStart) >= aalzSlidingWindowSize)
then begin
inc(swStart, aCount);
inc(swStartOffset, aCount);

end;
{advance the current pointer}
inc(swCurrent, aCount);
{check to see if we have advanced into the overflow zone}
if (swStart >= swMidPoint) then begin
{write some more data to the stream (from swBuffer
to swStart)}
swWriteToStream(false);
{move current data back to the start of the buffer}
Move(swStart^, swBuffer^, swCurrent - swStart);
{reset the various pointers}
dec(swCurrent, swStart - swBuffer);
swStart := swBuffer;

end;
end;
procedure TaaLZSlidingWindow.AddChar(aCh : char);
begin

{add the character to the buffer}
swCurrent^ := aCh;
{advance the start of the sliding window}
swAdvanceAfterAdd(1);

end;
procedure TaaLZSlidingWindow.AddCode(aDistance : integer;
aLength : integer);

var
FromChar : PChar;
ToChar : PChar;
i : integer;

begin
{set up the pointers to do the data copy; note we cannot
use Move since part of the data we are copying may be
set up by the actual copying of the data}
FromChar := swCurrent - aDistance;
ToChar := swCurrent;
for i := 1 to aLength do begin
ToChar^ := FromChar^;
inc(FromChar);
inc(ToChar);

end;
{advance the start of the sliding window}
swAdvanceAfterAdd(aLength);

end;

➤ Listing 1:
Sliding window methods
under decompression.

May 1999 The Delphi Magazine 37

and convert matching strings of
three characters or more into dis-
tance/length pairs. Any less, and
there would be no compression.
So, it makes sense to interpret the 3
bits as being lengths of 3 to 10
bytes by simply adding 3.

Hence, to convert a distance and
a length amount into a two byte
value we’d write something like
this:

Code := ((Distance-1) shl 3)+
(Length-3);

And to get the distance and length
values back, we’d code this:

Length := (Code and $7)+3;
Distance := (Code shr 3)+1;

Pretty simple stuff, I’m sure you’ll
agree.

Decompression
Let’s look at the decompression
method first, since conceptually it
is the easiest to visualize.

With decompression, we read a
flag byte and then use it to deter-
mine how we should read the next
eight codes from the stream. If the
current bit in the flag byte is zero,
we read one byte from the stream
and interpret it as a literal charac-
ter to be written straight to the
output stream. If, on the other
hand, the current bit is one, we
read two bytes from the input
stream and split the value into

distance and length values. We
then use these with our current
sliding window of previously
decoded data to interpret what
characters should be written to the
output stream.

Every time we decode a single
character, or a set of three to ten
characters, not only do we have to
write them to the output stream, as
I have already indicated, but we
have to add them onto the end of
the sliding window buffer and
advance the start of the sliding
window by a commensurate
amount so that the window size
never exceeds 8,192 bytes.

In a lot of LZ77 implementations
this is done with a circular queue.
Well, just because we’re different,
we’ll use a modification of the
circular queue which I introduced
in December 1998’s Algorithms
Alfresco. If you remember, this
implemented a circular queue as a
sliding buffer of data: when the
head pointer reached the halfway
mark of the buffer, the data was
moved down to the start of the
buffer again, and the pointers
reset.

So, for a sliding window of 8,192
bytes, we’d need at least a 16,384
byte buffer and when the pointer to
the start of the sliding window
reached the halfway point, we’d
move the window to the start of the
buffer and reset the pointers. Since
the compression phase would also
use a similar sliding window (we’ll

discuss how in a moment) it makes
sense to have a shareable class
implementation.

Look-Ahead Buffer
Before we go on to describe the
methods we’d need for this class, I
want to describe a little trick that’s
employed by PKZIP’s Deflate
method.

Go back to the example sentence
we were compressing above. At
one stage in describing the
algorithm we had the following
position:

---------+
a cat is |a cat is a cat
---------+^

and we discovered the distance/
length pair of <9,9>. However,
there is a little trick we can use.
Why stop at matching 9 charac-
ters? We can in fact match more
than that by going beyond the right
boundary of the sliding window,
and continue matching with the
current character and others to its
right. We could in fact match 14
characters in all, to give a code of
<9,14>, with the length being
greater than the distance. All very
well, and pretty clever, but what
happens on decoding? At the point
where we have to decode <9,14>
we have this in our sliding window:

procedure AALZDecompress(aInStream, aOutStream : TStream);
type
TModeState = (msGetFlagByte, msGetChar, msGetDistLen);

var
SlideWin : TaaLZSlidingWindow;
BytesUnpacked : longint;
TotalSize : longint;
ModeState : TModeState;
FlagByte : byte;
FlagMask : byte;
NextChar : char;
NextDistLen : longint;
CodeCount : integer;
Len : integer;

begin
SlideWin := TaaLZSlidingWindow.Create(aOutStream, false);
try
{read the uncompressed size from the stream}
StreamRead(aInStream, TotalSize, sizeof(TotalSize));
{prepare for the decompression}
BytesUnpacked := 0;
NextDistLen := 0;
ModeState := msGetFlagByte;
{while there are still bytes to decompress...}
while (BytesUnpacked < TotalSize) do begin
{read the next item}
case ModeState of
msGetFlagByte :
begin
StreamRead(aInStream, FlagByte, 1);
CodeCount := 0;
FlagMask := 1;

end;
msGetChar :
begin
StreamRead(aInStream, NextChar, 1);
SlideWin.AddChar(NextChar);
inc(BytesUnpacked);

end;
msGetDistLen :
begin
StreamRead(aInStream, NextDistLen, 2);
Len := (NextDistLen and $7) + 3;
SlideWin.AddCode((NextDistLen shr 3)+1, Len);
inc(BytesUnpacked, Len);

end;
end;
{calculate the next mode state}
inc(CodeCount);
if (CodeCount > 8) then
ModeState := msGetFlagByte

else begin
if ((FlagByte and FlagMask) = 0) then
ModeState := msGetChar

else
ModeState := msGetDistLen;

FlagMask := FlagMask shl 1;
end;

end;
finally
SlideWin.Free;

end;{try..finally}
end;

➤ Listing 2: Algorithms Alfresco
LZ decompression.

38 The Delphi Magazine Issue 45

---------+
a cat is |
---------+

We go back nine characters into
the window and start copying char-
acters, one by one until we reach
14 of them. It turns out that we end
up copying characters we have
managed to set as part of the same
operation. After copying nine char-
acters we have

---------+
a cat is |a cat is
---------+^ ^

from^ to^

with the places we are copying
from and copying to shown. As you
can see, we can easily copy the
remaining five characters with no
problem at all. Hence, it is simplic-
ity itself to have a length value
greater than a distance value
(although, it must be admitted, we
can’t just use the Moveprocedure to
copy the data).

What we shall do with the sliding
window class during decompres-
sion is to pass it the output stream

to which the data is to be written.
That way, when the object deter-
mines that it needs to slide the
active data in the buffer back to the
start, it can first copy the data it is
about to overwrite to the stream.
There are two main methods we
need for decompression: adding a
single character, and converting a
distance/length pair. Note that we
make the sliding window class per-
form these actions since we need
to update the sliding window and
advance in both cases, and also the
class is the best agent for convert-
ing the distance and length values.
The code is shown in Listing 1.

That done, the decompression
code is fairly simple to write. We’ll
code the main loop as a state
machine with three states: read
and process a flag byte, read and
process a character, and, finally,
read and process a distance/length
code. The code is shown in Listing
2. Notice that we determine when
to end the decompression by utiliz-
ing the fact that the compressor
writes the number of bytes in the
uncompressed stream to the start
of the compressed stream.

Compression
So, compression then. It’s the
really meaty part of the algorithm,

as it turns out. I’m sure that many
of you are wondering how on earth
we can manage to find the maxi-
mum matching string in the sliding
window data. That is, apart from
comparing the current set of char-
acters against all 8,192 possible
positions in the preceding data,
which you’ll agree would turn this
algorithm into something slower
than a three-toed sloth. So, given
the current set of characters, how
do we efficiently find the longest
match in the previous 8,192 bytes?

Ziv and Lempel didn’t suggest
much in their original paper. Some
people use a binary search tree
built over the sliding window to
store the (maximum length)
strings previously seen (an exam-
ple is Mark Nelson’s implementa-
tion, see the references at the end).
Instead, we’ll make use of a hint
presented in the internet docu-
ment Deflate Compressed Data
Format Specification (RFC1951):
use a hash table.

Here’s the plan. We get the three
characters at the current position.
(Why three? Because it is the mini-
mal length match we can make.)
Hash them using some routine to
get a hash value. Use the hash
value to access an element in a
hash table. What should this

constructor TaaLZHashTable.Create;
begin
inherited Create;
htlArray := TList.Create;
htlArray.Count := HashTableSize;

end;
destructor TaaLZHashTable.Destroy;
begin
if (htlArray <> nil) then begin
Empty;
htlArray.Free;

end;
inherited Destroy;

end;
procedure TaaLZHashTable.Empty;
var
Inx : integer;
ChainHead : PaaLZHashNode;

begin
for Inx := 0 to pred(HashTableSize) do begin
ChainHead := PaaLZHashNode(htlArray[Inx]);
if (ChainHead <> nil) then begin
htlFreeChain(ChainHead, false);
htlArray[Inx] := nil;

end;
end;

end;
function TaaLZHashTable.FindAll(const aKey : TaaLZKey;
aCutOffset : longint; aAction : ThtLZKeyEnumProc;
aExtraData : pointer) : boolean;

var
Inx : integer;
Temp : PaaLZHashNode;
Dad : PaaLZHashNode;

begin
{assume we don't find any}
Result := false;
{calculate the hash table index for this key}
Inx := (aKey.AsLong shr 8) mod HashTableSize;
{wander along the chain at this index}

Dad := nil;
Temp := PaaLZHashNode(htlArray[Inx]);
while (Temp <> nil) do begin
{if this node has an offset that is less than the cutoff
offset, then remove the rest of this chain and exit}
if (Temp^.hnOffset < aCutOffset) then begin
if (Dad = nil) then begin
htlFreeChain(Temp, false);
htlArray[Inx] := nil;

end else
htlFreeChain(Dad, true);

Exit;
end;
{if the node's key matches our key, call action routine}
if (Temp^.hnKey.AsLong = aKey.AsLong) then begin
Result := true;
aAction(aExtraData, aKey, Temp^.hnOffset);

end;
{advance to the next node}
Dad := Temp;
Temp := Dad^.hnNext;

end;
end;
procedure TaaLZHashTable.Insert(const aKey : TaaLZKey;
aOffset : longint);

var
Inx : integer;
NewNode : PaaLZHashNode;

begin
{calculate the hash table index for this key}
Inx := (aKey.AsLong shr 8) mod HashTableSize;
{allocate a new node and insert at the head of the chain
at this index in the hash table; this ensures that the
nodes in the chain are in reverse order of offset value}

NewNode := snmAllocNode;
NewNode^.hnKey := aKey;
NewNode^.hnOffset := aOffset;
NewNode^.hnNext := htlArray[Inx];
htlArray[Inx] := NewNode;

end;

➤ Listing 3: The hash table used
by Algorithms Alfresco LZ
compression.

40 The Delphi Magazine Issue 45

element consist of? In my previous
excursion into hash tables (The
Delphi Magazine, February and
March 1998) I used a linear probe
hash table; this time, however, we
shall use a hash table with chain-
ing: all items that hash to the same
value will form a linked list (a
chain) at the required element.
The items being stored in these
linked lists will consist of the three
character ‘signature’ as well as the
offset in the input stream where
the signature occurred.

All right then, we have the three
character signature at the current
position and we’ve hashed to a
linked list. We follow the linked list
and compare each item’s signature
in it to ours. If they’re equal we go
to the sliding window buffer using
the item’s offset value and then
compare the characters in the slid-
ing window with those at the cur-
rent position. We do this with
every item in the linked list that
matches signatures, and keep a
note of the largest match we find.

After this search, we’ll need to
add the current signature to the
hash table so that we may find it
with subsequent signatures. We
add it to the front of the linked list,

thereby ensuring that the linked
list becomes sorted in reverse
order by offset value.

But hang on a moment! With the
description I’ve just given, the
number of items in the hash table
will just keep on growing. In fact,
we don’t need the items which no
longer appear in our 8Kb sliding
window. There’s a choice here: we
could remove the item that’s just
about to disappear out of the slid-
ing window when we slide it along
(ie, find the signature of the posi-
tion just about to disappear from
the back of the sliding window,
hash it, follow the linked list at that
position in the hash table until we
find the relevant item, and then
delete it), or we could be a little
cleverer. Remember I said that the
linked lists are sorted in descend-
ing order by offset value? Well, as
we are stepping along a linked list
trying to find a maximum match for
the current position, if we should
hit an item with a very ‘old’ offset
value (ie one that no longer
appears in the sliding window) we
get rid of it and all subsequent items
in that linked list. Brilliant! We defer
removal of old items to our search
through the linked list routine,

when we’re actually there in the
middle of the linked list, in fact.
This does mean that the hash table
contains more items than it need
to, but this is small potatoes
compared with the benefit of a
speedier algorithm.

Phew! What else? Well, the hash
function needs to be decided on,
for a start. Since the signatures are
3 characters long, we can pretend
that they are the least significant 3
bytes of a longint, with the most
significant byte being zero. Bingo,
a hash value, with practically no
calculation. As usual, the hash
table size is a prime number: I
chose 521, the smallest prime
greater than 512. This means that,
on average, 16 signatures from our
8Kb sliding window will map to the
same element number: forming a
reasonably sized linked list to step
along during our search.

I can imagine that my regular
readers are wondering whether I
shall be using a node manager to
perform the linked list node
allocations and frees as I did in
Algorithms Alfresco for February
1999. Well, of course! Think about
it: as we travel through the input
stream we’ll be allocating exactly
one node and, on average, freeing

procedure TaaLZSlidingWindow.Advance(aCount : integer);
var
ByteCount : integer;

begin
{advance the start of the sliding window, if required}
if ((swCurrent-swStart) >= aalzSlidingWindowSize)
then begin
inc(swStart, aCount);
inc(swStartOffset, aCount);

end;
{advance the current pointer}
inc(swCurrent, aCount);
{check to see if we have advanced into the overflow zone}
if (swStart >= swMidPoint) then begin
{move current data back to the start of the buffer}
ByteCount := swLookAheadEnd - swStart;
Move(swStart^, swBuffer^, ByteCount);
{reset the various pointers}
ByteCount := swStart - swBuffer;
swStart := swBuffer;
dec(swCurrent, ByteCount);
dec(swLookAheadEnd, ByteCount);
{read some more data from the stream}
swReadFromStream;

end;
end;
function TaaLZSlidingWindow.Compare(aOffset : longint;
var aDistance : integer) : integer;

var
MatchStr : PChar;
CurrentCh : PChar;

begin
{Note: when this routine is called it is assumed that at
least three characters will match between the passed
position and the current position}
{calculate the position in the sliding window for the
passed offset and its distance from the current
position}
MatchStr := swStart + (aOffset - swStartOffset);
aDistance := swCurrent - MatchStr;

inc(MatchStr, 3);
{calculate the length of the matching characters between
this and the current position. Don't go above the
maximum length. Have a special case for the end of the
input stream}
Result := 3;
CurrentCh := swCurrent + 3;
if (CurrentCh <> swLookAheadEnd) then begin
while (Result < aalzMaxMatchLength) and
(MatchStr^ = CurrentCh^) do begin
inc(Result);
inc(MatchStr);
inc(CurrentCh);
if (CurrentCh = swLookAheadEnd) then
Break;

end;
end;

end;
procedure TaaLZSlidingWindow.GetNextKey(var aMS : TaaLZKey;
var aOffset : longint);

var
P : PChar;
i : integer;

begin
{calculate the length of the match string; usually it's 3,
but at the end of the input stream it could be 2 or less}
if ((swLookAheadEnd - swCurrent) < 3) then
aMS.AsString[0] := char(swLookAheadEnd - swCurrent)

else
aMS.AsString[0] := #3;

P := swCurrent;
for i := 1 to length(aMS.AsString) do begin
aMS.AsString[i] := P^;
inc(P);

end;
aOffset := swStartOffset + (swCurrent - swStart);

end;

➤ Listing 4: Sliding window methods under compression.

May 1999 The Delphi Magazine 41

➤ Listing 5: Algorithms Alfresco
LZ compression.

one node for each character
encountered. So for a reasonably
sized file, say about 64Kb, we’ll be
allocating 65,000 nodes and freeing
them all; all of them being the same
size of course. Relying on the
Delphi heap manager for this lot
would certainly be inefficient.

The code for the hash table class
is shown in Listing 3.

What happens to the sliding
window during compression? Well,
first of all, it would be nice if the
sliding window class was given the
responsibility for reading data
from the input stream; that way the
user of the class can forget about
replenishing the data in its buffer.
What else? Well, we’ll need a rou-
tine that returns the three charac-
ter signature at the current
position, together with its offset
value. We shall also need a routine
that gets passed an offset value,
that converts this offset value into
a position into the sliding window,
and that compares the characters
there with the characters at the
current position. It should return
the number of characters that
match (which will be at least three)
and the distance value for that
offset. Listing 4 has the details.

And now, finally, we can write
the compressor routine (Listing 5).
The routine is slightly complicated

by the need to accumulate com-
pression codes eight at a time, so
that we can prepend them in the
output stream with a flag byte;
that’s what the Encodings array is
all about. However, since we have a
lot of supporting code all worked
out, the routine itself is not too
hard to understand. As usual the
full code is available on the accom-
panying disk.

Conclusion
Was all this worth it? Well, in
theory, if we could compress all 10
byte strings in a file down to 2 (a
maximal match every time) for
every 80 bytes of the file we’d write
out 17 (one flag byte and eight
codes): a compression ratio of
22%. If, on the other hand, we could
find no matches in the file, we’d
actually write out nine bytes for
every eight in the original file, a
‘compression’ ratio of 113%. Gen-
erally compressing files with this
method would tend to fall some-
where between these two
extremes (my favorite Love’s
Labour’s Lost compresses down to
59%, for example).

And with that we come to the
end of another fairly difficult, fairly
complex, algorithm column. Con-
gratulations if you made it all the
way through only drinking one
mug of coffee. Don’t feel too
despondent if you feel over-
whelmed: before embarking on

this article I’d never written an
LZ77 sliding window implementa-
tion and it took around two weeks
of lunchtime and weekend coding
to get it right. Something simpler is
in the works for next time!

Julian Bucknall is feeling
squeezed dry. No more compres-
sion for a while! He can be
reached at julianb@turbopower.
com. The code that accompanies
this article is freeware and
can be used as-is in your own
applications.

© Julian M Bucknall, 1999

References
The Data Compression Book by
Mark Nelson, Prentice Hall.

Microsoft’s Compression File
Format by Pete Davis in Windows/
DOS Developer’s Journal, July
1994.

Deflate Compressed Data Format
Specification by P. Deutsch,
RFC1951.

procedure AALZCompress(aInStream, aOutStream : TStream);
var
HashTable : TaaLZHashTable;
SlideWin : TaaLZSlidingWindow;
Key : TaaLZKey;
Offset : longint;
CodeCount : integer;
Encodings : TEncodingArray;
EnumData : TEnumExtraData;
LongValue : longint;
i : integer;

begin
HashTable := TaaLZHashTable.Create;
try
SlideWin := TaaLZSlidingWindow.Create(aInStream, true);
try
{write uncompressed size of input stream to stream}
LongValue := aInStream.Size;
StreamWrite(aOutStream, LongValue, sizeof(LongValue));
{prepare for the compression}
CodeCount := 0;
FillChar(Encodings, sizeof(Encodings), 0);
{get the first key}
SlideWin.GetNextKey(Key, Offset);
{while the key is three characters long...}
while (length(Key.AsString) = 3) do begin
{find the longest match in the sliding window using
the hash table to identify matches}
EnumData.edSW := SlideWin;
EnumData.edMaxLen := 0;
if HashTable.FindAll(Key,
Offset - aalzSlidingWindowSize, MatchLongest,
@EnumData) then begin
{we have a match: save the distance/length pair

and advance the sliding window by the length}
AddCodeToEncodings(aOutStream,
EnumData.edDistMaxMatch, EnumData.edMaxLen,
Encodings, CodeCount);

SlideWin.Advance(EnumData.edMaxLen);
end else begin
{we don't have a match: save the current character
and advance by 1}
AddCharToEncodings(aOutStream, Key.AsString[1],
Encodings, CodeCount);

SlideWin.Advance(1);
end;
{now add this key to the hash table}
HashTable.Insert(Key, Offset);
{get the next key}
SlideWin.GetNextKey(Key, Offset);

end;
{if the last key was two characters or less, save them
as literal character encodings}
if (length(Key.AsString) > 0) then begin
for i := 1 to length(Key.AsString) do
AddCharToEncodings(aOutStream, Key.AsString[i],
Encodings, CodeCount);

end;
{make sure we write out the final encodings}
if (CodeCount > 0) then
WriteEncodings(aOutStream, Encodings, CodeCount);

finally
SlideWin.Free;

end;{try..finally}
finally
HashTable.Free;

end;{try..finally}
end;

	Shannon-Fano Encoding
	New Beginnings
	Dictionary Encoding
	Sliding Windows
	Trouble Ahead
	Our Own LZ77 Algorithm
	Decompression
	Look-Ahead Buffer
	Compression
	Conclusion
	References

